

ACEnergy

Traffic Impact Assessment Report

Tenterfield 5MW DBESS Lot 1 DP777724 Bruxner Highway, Tenterfield

18 July 2025

ENGINEERING
PLANNING
SURVEYING
CERTIFICATION
PROJECT MANAGEMENT

© Copyright Barker Ryan Stewart Pty Ltd 2025 All Rights Reserved

Project No.	250378
Author	JG
Checked	GB
Approved	GB

Rev No.	Status	Date	Comments
1	DRAFT	27/06/2025	
2	FINAL	18/07/2025	Client Amendments

COPYRIGHT

Barker Ryan Stewart reserves all copyright of intellectual property in any or all of Barker Ryan Stewart's documents. No permission, licence or authority is granted by Barker Ryan Stewart to any person or organisation to use any of Barker Ryan Stewart's documents for any purpose without the written consent of Barker Ryan Stewart.

REPORT DISCLAIMER

This report has been prepared for the client identified in section 1.0 only and cannot be relied on or used by any third party. Any representation, statement, opinion or advice, expressed or implied in this report is made in good faith but on the basis that Barker Ryan Stewart are not liable (whether by reason of negligence, lack of care or otherwise) to any person for any damage or loss whatsoever which has occurred or may occur in relation to that person taking or not taking (as the case may be) action in any respect of any representation, statement, or advice referred to above.

NORTHERN RIVERS

COFFS HARBOUR

Table of Contents

1	Introduction	.4
2	Existing Conditions	
	2.1 Site Location	
	2.2 Existing Development	.5
	2.3 Existing Road Conditions	.5
	2.4 Traffic Flows and Volumes	.6
	2.4.1 TfNSW Traffic Data	
	2.4.2 Existing Road Service Level	
	2.5 Public Transport, Pedestrians and Cyclists	./
3	Proposed Development	
	3.1 Development Description	.8
	3.2 On Site Parking	.8
	3.3 Access	.8
	3.4 Sight Distance	.9
	3.5 Construction Traffic Management	10
4	Traffic Assessment	13
	4.1 Traffic Generation	13
	4.2 Traffic Impact – Road and Intersection Capacity	13
5	Conclusion/Recommendations	15
6	References	17

Appendix A – Development Plans

COFFS HARBOUR NORTHERN RIVERS

1 Introduction

Barker Ryan Stewart have been engaged by ACEnergy Pty. Ltd. to prepare a Traffic Impact Assessment in accordance with the requirements of the Tenterfield Development Control Plan (2014) and the Transport for NSW (TFNSW) 'Guide to Transport Impact Assessment (2024)' to accompany a Development Application to Tenterfield Shire Council for a 4.95MW Distributed Battery Energy Storage System (DBESS) and associated works.

The purpose of this report is to assess and address traffic and access impacts generated by the construction and operation of the proposed development. This can be briefly outlined as follows:

- Access and car parking design requirements.
- The expected traffic generation to/from the proposed development during construction and operation.
- Identification of the preferred construction traffic route.
- The impact of the proposed development on the road network.
- Intersection analysis.

As per the project brief from the applicant this Traffic Impact Assessment Report (TIA) was undertaken as a desktop and Barker Ryan Stewart has not inspected the site or the adjoining local and state road network, it has relied upon detail survey and photos undertaken by the surveyor. The TIA has concluded that the subject site is suitable for the proposed development in relation to traffic impact, access and safety considerations.

2 Existing Conditions

2.1 Site Location

The site of the proposed development is described as Lot 1 in DP 777724 Bruxner Highway, Tenterfield. The location of the site is shown in *Figure 2.1* below.

Figure 2.1: Site Location (Near maps 2025)

2.2 Existing Development

The area of the development site for the proposed DBESS site is currently a vacant farm paddock. The site is relatively flat.

The existing access to the site is via a sealed access off the Bruxner Highway to the dwelling on the site in the south-eastern corner of the site. With the DBESS site being in the north-western corner of the site as shown in the development plans in **Appendix A** it is proposed to construct a new vehicle access crossing to the DBESS site off Old Racecourse Road, details of which are outlined in **Section 3** below.

2.3 Existing Road Conditions

Bruxner Highway

The Bruxner Highway is a classified state highway (HW17) under the care and control of Transport for New South Wales. Functionally it operates as an arterial road connecting the NSW north coast at Ballina (Pacific Highway) to the New England region and the New England Highway at Tenterfield.

The Bruxner Highway is not a designated B-Double route therefore a special permit will be required to be obtained from Tenterfield Council should B-Double vehicles deliver materials to the site for the construction of the DBESS. However, the applicant has advised that the maximum size vehicle for materials delivery is a 19-metre articulated vehicle (semi-trailer) therefore it is not expected that a special B-Double licence for the haulage route will be required. The applicant has also advised there will be no oversize over mass vehicle deliveries to the site over the 4-week construction period.

The Bruxner Highway near the site is a two-lane two-way sealed rural road with a carriageway width of 8.5 metres providing two travel lanes (one in each direction) 3.5 metres wide and 0.75 metre sealed shoulders. From the photographs provided by the application the Highway appears to be in good condition in the vicinity of Bellevue Road and is considered suitable to carry semi-trailers. The road is centre line and edge line marked, and a 100 km/h speed zoning exists near Bellevue Road.

Bellevue Road

Bellevue Road is a local rural road under the care and control of Tenterfield Shire Council. It is sealed between the Bruxner Highway and Old Racecourse Road with a carriageway width of 7 metres wide with narrow unsealed shoulders. It is suitable for two-way traffic flow including heavy vehicle traffic with travel lane widths of 3.5 metres. It is not line marked, and a 60 km/h speed zoning would likely apply to the road. Functionally if operates as a local access road providing vehicular access to properties along its length. Based on the photographs provided by the applicant the pavement and wearing surface appear to be in fair to good condition.

Bellevue Road connects to the Bruxner Highway via a give way priority controlled cross-intersection with the Highway having priority. Based on the traffic data sourced for the local and state road network it would not be expected that there would be any issues with traffic from the development as this intersection is likely to be currently operating with uninterrupted flow conditions. With both roads being in excess of 7 metres wide there would not be expected to be any issue for semi-trailers turning into and out of Bellevue Road when delivering materials to the site.

Old Racecourse Road

Old Racecourse Road is a local rural road under the care and control of Tenterfield Shire Council. Functionally it operates as a local access providing vehicular access to properties along its length. The road is sealed (4.5 metres wide) from Bellevue Road east along the delivery route to the site for approximately 165 metres before becoming a gravel unsealed rural road approximately 4 to 4.5 metres wide for the last 450 metres to the site. As such it is only suitable for two-way traffic flow at low speed and low traffic volumes. Due to the likely heavy vehicle traffic associated with the construction of the DBESS over a 4-week construction period it is recommended that a condition of consent be placed as part of the construction certificate requirements that the use of the road by construction traffic be regulated and controlled under a traffic control plan.

The sealed section of Old Racecourse Road is not line marked, and a 60 km/h speed zoning would likely apply to the road though under the traffic control plan prepared for the project this may need to be reduced to 40 km/h for the duration of construction works. Based on the photographs provided by the applicant the pavement and wearing surface appear to be in fair to good condition. With suitable traffic control provided on the unsealed section of the road it is considered that heavy vehicles up to a 19-metre articulated vehicle could safely and conveniently access the DBESS site.

Old Racecourse Road intersects Bellevue Road via a give way priority controlled cross intersection with Bellevue Road having priority. Based on the survey detail provided and the likelihood of traffic volumes less than 30 vtph on the road network it is considered the intersection could cater for semi-trailer movements from Bellevue Road south into Old Racecourse Road east and vice versa.

2.4 Traffic Flows and Volumes

2.4.1 TfNSW Traffic Data

The closest TFNSW traffic counts on the Bruxner Highway are located 100 metres east of Rouse Street, Tenterfield or approximately 2.5km west of the site. However, this traffic count data is from 2011 therefore to estimate current (2025) traffic volumes a conservative background traffic growth rate of 2% compound per annum has been used. No other traffic data could be found that was relevant to the site.

The 2011 data obtained from the TfNSW website was as follows.

- AM peak period 8 am 9 am 206 vtph (two-way): and
- PM peak period 3 pm 4 pm 225 vtph (two-way).

Estimated current traffic volumes therefore are.

- AM peak period 8 am 9 am 275 vtph (two-way): and
- PM peak period 3 pm 4 pm 300 vtph (two-way).

No data for Bellevue Road or Old Racecourse Road was sourced or recorded for this assessment however based on an assessment of the function of the road and the number of properties serviced by the road it is considered reasonable to assume two-way mid-block traffic volumes on these roads would be less than 30 vtph.

2.4.2 Existing Road Service Level

The TFNSW Guide to Traffic Generating Developments Table 4.5 sets out two-way hourly road capacities for two-lane rural roads for different levels of service based on a design speed of 100km/h.

Percent of Heavy Vehicles Terrain Level of Service 0 5 10 15 630 590 560 530 В C 1030 970 920 870 Level D 1630 1550 1480 1410 E 2630 2500 2390 2290 В 500 420 360 310 C 920 760 650 570 Rolling D 1370 1140 970 700 E 2420 2000 1720 1510 340 180 150 В 230 C 600 410 320 260 Mountainous D 1050 680 500 400 2160 1400 1040 F 820

Table 4.5 peak hour flow on two-lane rural roads (veh/hr) (Design speed of 100km/hr)

The peak hour traffic counts on the Bruxner Highway and the local road network near the site will be less than 300 vehicles per hour. Therefore, the table indicates that these roads are operating at a high level of service (LoS A) with ample spare capacity to cater for additional traffic volumes that would be generated by future land use developments and in particular construction traffic associated with the construction of this DBESS site.

2.5 Public Transport, Pedestrians and Cyclists

As a rural area the Bruxner Highway, Bellevue Road and Old Racecourse Road do not specifically cater for pedestrians and cyclists. The nearest public transport services would be within the Tenterfield township some 2.5 km's west of the site therefore are not considered convenient to the site. However, the construction and operation of the proposed DBESS site will not generate any demand for alternative transport modes and as such no nexus exists for any changes to the current alternative transport mode infrastructure near the site or in the Tenterfield township.

3 Proposed Development

3.1 Development Description

The proposed development consists of an approximately 4.95 MW Distributed Battery Energy Storage System (DBESS) and associated works including the installation of four (4) Lithium-ion batteries, a Modular Voltage Power System (MVPS) control board, direct connection to a power line in Old Racecourse Road in front of the site, a new vehicular access crossing to Old Racecourse Road, on-site car parking, landscaping around the boundary of the site and a temporary construction office / amenities. All works are to be undertaken in accordance with any Tenterfield Shire Council requirements.

The development concept plans for the project are attached at Appendix A.

3.2 On Site Parking

On-site car parking is required to be provided in accordance with the requirements of Tenterfield Shire Council's DCP 2014 Chapter 6 Access and Parking.

As there are no rates required for a DBESS site it is considered that the 'Industry' rate of 1 space per 100 m² GFA would apply. With no building proposed for the DBESS and only 1 to 2 employees employed during the operation Phase, the DCP requirement would therefore only be for one space.

Two light vehicles will attend the subject site every fortnight during the operational phase for general maintenance. Therefore, two car parking spaces are proposed which is considered satisfactory to cater for the operations of the development once the works are complete.

The car parking area would need to be designed and constructed in accordance with the requirements of Australian Standard AS/NZS 2890.1-2004 Parking Facilities – Part 1 Off-street car parking with parking bay sizes 2.4m x 5.4m and aisle widths of 5.8m. The development plans at **Appendix A** show a car parking area capable of catering for 2 vehicles in the north-eastern corner of the site. This car park will be constructed to Tenterfield Shire Council requirements.

3.3 Access

The proposed new vehicle access crossing in Old Racecourse Road is to be located as shown in the plans in **Appendix A** approximately 60 metres west of the end of the constructed section of Old Racecourse Road. A photo of the location of where the new crossing is to be constructed is shown in **Photograph 1** below.

The proposed new gravel vehicular access crossing to the site in Old Racecourse Road will be designed and constructed in accordance with the requirements of AS 2890.2 Parking Facilities Part 2 Off Street Commercial Vehicle Facilities with a 12.5 metre minimum width to cater for swept paths of the 12.5m Heavy Rigid Vehicle and 19m semi-trailers to be used during the construction to transport batteries and other materials to the site.

Photograph 1: New access location to the proposed DBESS site.

3.4 Sight Distance

The sight distance from the proposed new access location to the East is more than 400 metres and looking to the West is more than 500 metres, respectively. **Photograph 2** below shows the sight distance to the west from the site which is the critical distance for assessment.

In accordance with AS 2890.2 Parking Facilities Part 2 Off Street Commercial Vehicle Facilities Figure 3.3 for a 100 km/hr posted speed limit a sight distance of 222 metres is required for a minimum gap sight distance of 8 sec. Austroads Guide to Road Design – Part 4A – Unsignalised and signalised intersections - Table 3.2 requires a for safe intersection sight distance of 248 metres for a 100km/hr posted speed zone.

Therefore, there is suitable safe sight distance available in each direction along Old Racecourse Road.

Photograph 2: Sight distance looking to the West from the new access location.

3.5 Construction Traffic Management

Construction Parking

Construction employee car parking will be provided within the site indicated on the Development Plans at **Appendix A**. This area is sufficient to cater for the anticipated up to 6 construction vehicles during the peak of the construction. There is also a significant amount of area available for any overflow parking if needed.

Construction work hours:

The construction work hours are between:

- Monday to Friday: 7am to 6pm
- Saturday: 8am to 1pm
- No work on Sundays or public holidays

Construction Traffic

The following table outlines the breakup of the 4-week construction program for each activity and the estimated number and type of traffic movements for each activity:

Week	Construction Activities	No. of Single-Trip Vehicle Movement	
Drainage, road, and fencing wor Installation of concrete footings		Light – 10 (2 per day) Heavy – 17 - Breakdown: 13x Truck & Dog 3x Heavy rigid concrete trucks 1x Concrete boom truck	
Week 2	Cable installation Delivery of battery shipping containers and inverter station Installation of battery shipping containers and inverter station	Light – 15 (3 per day) Heavy – 10 - Breakdown: • 6x 19m Semi • 4x Heavy rigid	
Week 3	Electrical installation and cable termination Electrical testing	Light – 15 (3 per day)	
Week 4	commissioning / demobilisation	Light – 10 (2 per day) Heavy – 2 - Breakdown: • 2x Heavy rigid	

otes:

- o Max No. of heavy vehicles per hour: 1
- o Max No. of staff members on site: 6
- The heavy vehicles will be delivering materials to the site including the new battery storage containers and the MVPS containers (The largest size of vehicles 19m semi-trailer)

Notes:

- o Peak traffic generation: 6 light vehicles and 1 heavy vehicle accessing the subject site daily.
- o The heavy vehicles will be delivering materials to the site:
 - Battery storage containers and the MVPS containers via 19m semi-trailer.
 - Gravel material Truck and dog combination.
 - Concrete footings -Ready Made Concrete Agitators and Concrete Boom truck (MRV).
 - Fencing Heavy Rigid Vehicle.

Construction Vehicle Route

The applicant has advised all materials will be transported from either the Ports of Newcastle or Sydney along the State Highway system – M1 Pacific Motorway and New England Highway to Tenterfield then via Bruxner Highway, Bellevue Road and Old Racecourse Road to the DBESS construction site. As there will be no B-Double deliveries or OSOM deliveries this route is considered suitable for delivery of materials to the site without the need for any special permits.

brs.com.au

The main consideration for access for construction vehicles to the site is the suitability of the local road network to safely cater for heavy vehicles. As outlined in Section 2.3, the Bruxner Highway has a rural sealed road formation with two lanes, each 3.5 metre wide, between the New England Highway at Tenterfield to Bellevue Road and Bellevue Road has two lanes 3.5 metres to Old Racecourse Road therefore all vehicles could safely pass each other on these roads. Old Racecourse Road has a carriageway width of 4 to 4.5 metres which while allowing two light vehicles to pass each other at low speeds would not allow light vehicles to pass heavy vehicles on the road. As traffic volumes on this section of Old Racecourse Road are less than 30 vtph this is not a major concern and road safety can be managed through a Traffic Control Plan for Old Racecourse Road during construction of the DBESS site.

It is considered the proposed construction vehicle route from Tenterfield to the site via the Bruxner Highway, Bellevue Road and Old Racecourse Road is suitable to carry heavy vehicles. Therefore, the construction route can be assessed as suitable for the construction traffic associated with the DBESS construction over a one-month period.

Figure 3.1: Construction Vehicle Route from Tenterfield.

Construction Traffic Management

A more detailed Construction Traffic Management Plan (CTMP) can be prepared at the Construction Certificate stage to address any conditions of development consent. The proposed CTMP would outline how the Construction Traffic will be managed, swept path of construction vehicles where required, preparation of a Traffic Control Plan for the construction of the new access crossing and during its use by construction vehicles and details of the monitoring and performance requirements.

4 Traffic Assessment

4.1 Traffic Generation

The 'Guide to Impact Assessment' prepared by Transport for NSW does not provide traffic generation rates for DBESS sites.

The traffic generated by the site during its operation once constructed is minimal with only two light vehicles attending the site every fortnight for general maintenance.

As indicated in Section 3.5 above the peak traffic generation will be during the construction phase of the project. At its peak during Weeks 1 and 2 of construction 3 light vehicles and 4 heavy vehicles will access the subject site daily. A conservative maximum estimate for development traffic during peak hours is for 7 vehicle trips, 5 inbound and 2 outbound during the AM peak hour periods and 5 outbound and 2 inbound during the PM peak hour periods.

All this traffic will have an origin / destination from / to Tenterfield along the Bruxner Highway.

Existing traffic

From Section 2.4, traffic volumes on the state and local road network are less than 300 vtph and 30 vtph, respectively.

4.2 Traffic Impact – Road and Intersection Capacity

The addition of only 7 vtph and 2 vtph on the road network during the construction and operational phases of the project, respectively, will not result in a deterioration of the mid-block LoS experienced by motorists on the road network therefore will not adversely impact on the efficiency and effectiveness of the adjoining road network.

Similarly with traffic volumes less than 300 vtph on the local and state road network, intersections on the adjacent road network will be operating with uninterrupted flow conditions based on the following table sourced from Austroads Guide to Traffic Management Part 6 – Intersections, Interchanges and Crossings Management which provides advice on the upper thresholds for uninterrupted flow conditions.

The following table may be used as an initial guide to determine the need for a detailed traffic analysis in accordance with the procedure provided in Part 3 of the Guide to Traffic Management. When the volumes at an intersection are less than those shown, a detailed analysis to demonstrate that adequate capacity is available is unlikely to be necessary. Furthermore, flaring of the approaches is unlikely to be needed based on capacity. However, separate lanes for left or right-turning vehicles may be desirable on the major road for safety reasons.

Major road type ¹	Major road flow (vph) ²	Minor road flow (vph) ³
Two-lane	400	250
	500	200
	650	100
	1000	100
Four-lane	1500	50
	2000	25

Notes:

- 1. Major road is through road (i.e. has priority).
- Major road flow includes all major road traffic with priority over minor road traffic.
- 3. Minor road design volumes include through and turning volumes.

brs.com.au

The addition of 7 vtph on peak hour traffic volumes on the adjoining local and state road network during the construction phase of the project will not result in these thresholds being reached therefore the intersections along the impacted road network will continue to operate with uninterrupted flow conditions during the construction and operational phases of the project. Therefore, it is reasonable to conclude that the proposed DBESS site will not adversely impact on the operation of the adjoining local and state road network.

5 Conclusion/Recommendations

This Traffic Impact Assessment has been prepared in accordance with the requirements of the Tenterfield Development Control Plan 2014 and the Transport for NSW (TFNSW) 'Guide to Transport Impact Assessment (2024)' to accompany a Development Application for a DBESS site on Lot 1 DP777724 Bruxner Highway, Tenterfield.

During operations two light vehicles will attend the subject site every fortnight during the operational phase for general maintenance. Therefore, two parking spaces are proposed, which is considered satisfactory to cater for the operations of the development once the works are complete.

The car parking area would need to be designed and constructed in accordance with the requirements of Australian Standard AS/NZS 2890.1-2004 Parking Facilities – Part 1 Off-street car parking with parking bay sizes 2.4m x 5.4m and aisle widths of 5.8m. There is sufficient area available on site to construct the required car park.

The proposed new gravel vehicular access crossing to the site off Old Racecourse Road will be designed and constructed in accordance with the requirements of AS 2890.2 Parking Facilities Part 2 Off Street Commercial Vehicle Facilities with a 12.5 metre minimum width to cater for swept paths of the 12.5m Heavy Rigid Vehicle and 19m semi-trailers to be used during the construction to transport batteries and other materials to the site. There is suitable safe sight distance available in each direction along Old Racecourse Road.

The proposed vehicle route from the New England Highway to the site via the Bruxner Highway, Bellevue Road and Old Racecourse Road is suitable to carry heavy vehicles. Therefore, the construction vehicle route will be suitable to cater for the construction traffic associated with the DBESS site construction over a one-month period.

A more detailed Construction Traffic Management Plan can be prepared at the Construction Certificate stage to address any conditions of development consent.

At its peak up to 3 light vehicles and 4 heavy vehicles will be accessing the subject site during the road network AM and PM peak hours. The addition of 7 vehicle movements per hour will not cause the capacity thresholds for the adjoining road network determined in this assessment to be reached. Therefore, the proposed development will not adversely impact on the local and state road network mid-block efficiency.

The addition of 7 vtph on peak hour traffic volumes on the adjoining local and state road network during the construction phase of the project will not result in the thresholds for uninterrupted flow conditions at any of the impacted intersections on the delivery route being reached therefore the intersections along the impacted road network will continue to operate with uninterrupted flow conditions during the construction and operational phases of the project. Therefore, it is reasonable to conclude that the proposed DBESS site will not adversely impact on the operation of the adjoining local and state road network.

The proposed development will not generate any increase in public transport demand therefore no nexus exists for the provision of new services or improved infrastructure resulting from the development.

Similarly, the development will not generate any additional pedestrian or cycle traffic. Therefore, no nexus exists for the provision of additional pedestrian paths or cycle ways near the site.

The Traffic Impact Assessment concludes that the subject site is suitable for the proposed development in relation to the impact of access, traffic impacts and safety considerations.

Overall, it is concluded that the construction and operation of the proposed DBESS site on Lot 1 DP7777124 Bruxner Highway, Tenterfield will not adversely impact on the adjoining state and local road network and Tenterfield Shire Council can support the project in regard to traffic, parking and access issues.

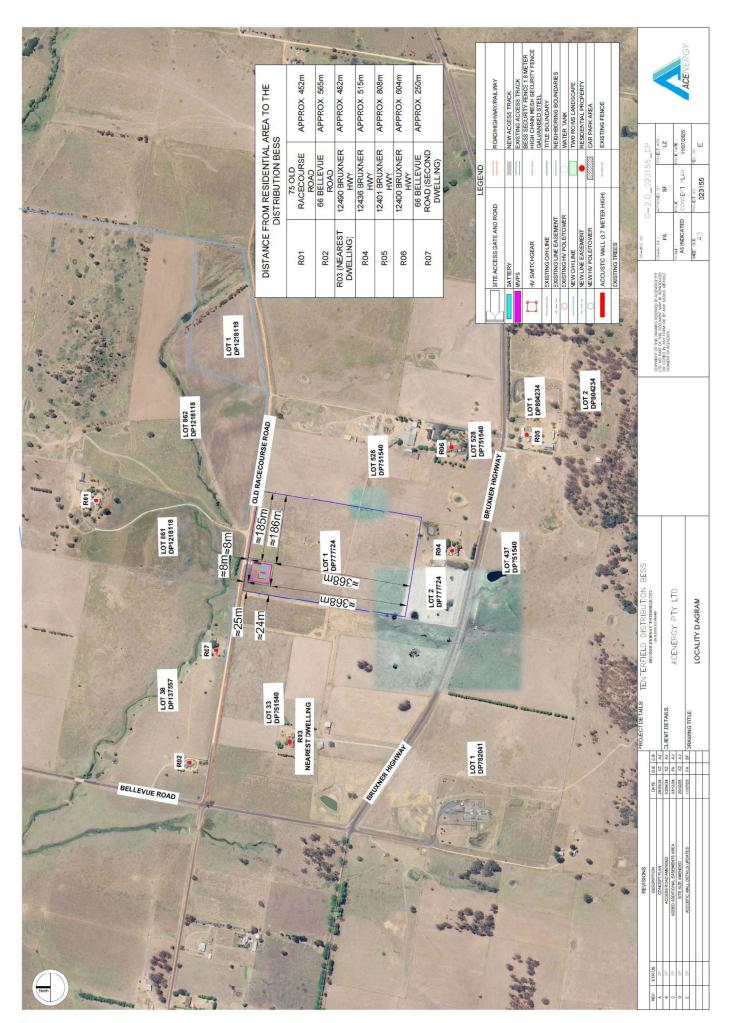
6 References

Austroads 'Guide to Traffic Management Part 6: Intersections, Interchanges and Crossings.'

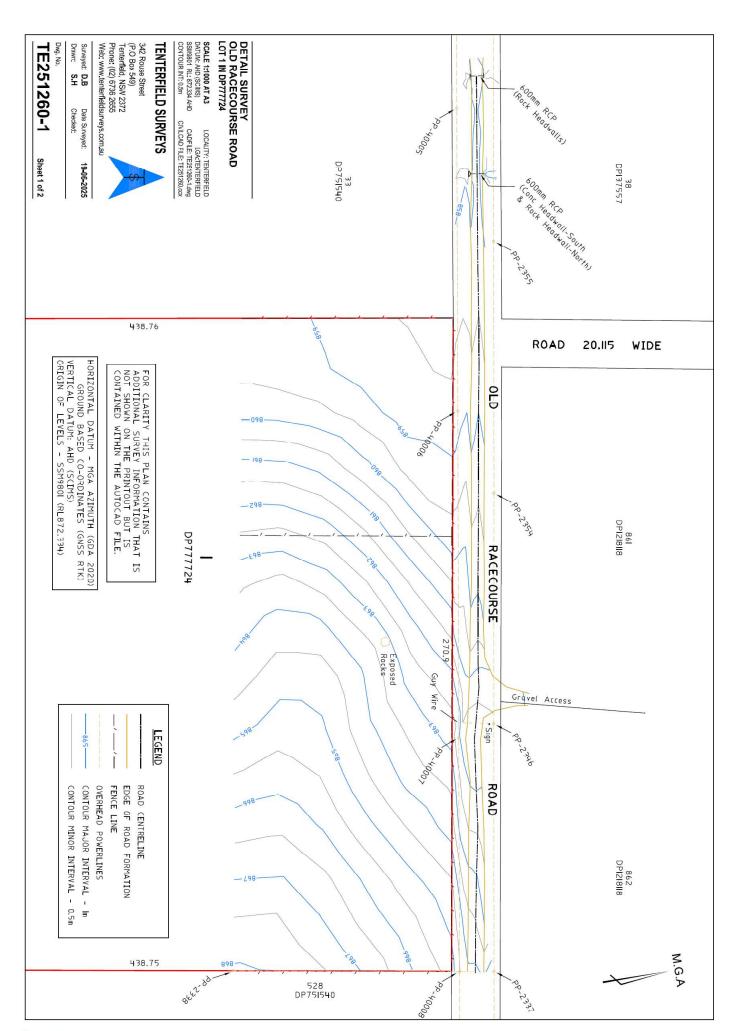
Transport for NSW 'Guide to Transport Impact Assessment (2024)'.

Transport for NSW 'Guide to Traffic Generating Developments' (2002).

NSW Department of Planning, 'SEPP (Infrastructure) 2007'


Tenterfield Shire Council's DCP 2014

AS/NZS 2890.1-2004 Parking Facilities – Part 1 Off-street car parking


AS 2890.2 Parking Facilities Part 2 Off Street Commercial Vehicle Facilities

brs.com.au

Appendix A – Development Plans

HORIZONTAL DATUM - MGA AZIMUTH (GDA 2020) GROUND BASED CO-ORDINATES (GNSS RTK) VERTICAL DATUM: AHD (SCIMS) ORIGIN OF LEVELS - SSM9801 (RL872.334) FOR CLARITY THIS PLAN CONTAINS ADDITIONAL SURVEY INFORMATION THAT IS NOT SHOWN ON THE PRINTOUT BUT IS CONTAINED WITHIN THE AUTOCAD FILE. ALDERSHOT ROAD 37 DP7515**4**0 3**4** DP7I20I PP-689 Headwall (Cont Block) HADDIN RCE LEGEND BELLEVUE ROAD FENCE LINE EDGE OF BITUMEN Sign CONTOUR MAJOR INTERVAL - Im OVERHEAD POWERLINES CONTOUR MINOR INTERVAL - 0.5m TREE 958 Comms Pillar Comms Pit 38 DPI37557 Guy Wire OPD DP75/540 PP-40001 RACECOURSE ROAD SCALE 1:500 AT A3
DATUM: AHD (SCIMS)
SSM9801 RL: 672.334 AHD
CONTOUR INT: 0.5m 342 Rouse Street (P.O Box 549) Tenterfield, NSW 2372 Phone: (02) 6736 2655 DETAIL SURVEY
INTERSECTION OF OLD RACECOURSE ROAD &
BELLEVUE ROAD - LOT 33 IN DP751540 Surveyed: **D.B**Drawn: **S.H** Web: www.tenterfieldsurveys.ccm.au TENTERFIELD SURVEYS TE251260-1 Date Surveyed: Checked: LOCALITY: TENTERFIELD
LGA:TENTERFIELD
CADFILE: TE251260-1.dwg
CIVILCAD FILE: TE251260.ccx M.G.A Sheet 2 of 2 19-06-2025